Template:Feeder and Source Content Data Section

From SysCAD Documentation
Jump to navigation Jump to search

This section mainly has read only variables, except for the first section, Model.

  • Model determines which species model the feeder uses. The options available to the user will depend on the species model used by the project. Please refer to the species model for a description of this page, if a species model is chosen. The default, 'Standard', will be described here.
Tag (Long/short) Input / Calc Calculated Variables / Options

Model

The SpModel.Reqd field is only shown if more than one Species Model is available in the project (e.g. Standard and Bayer3). On a Content page, it is an input field. If SpModel.Reqd is set to Inherit, then the species model used with the be the default method as selected in the configuration file.

SpModel.Reqd Inherit Upstream configuration will be used.
Standard All the variables are calculated using the Mass Weighted Mean of the species.
Species Model Use an alternative species model, such as 'Bayer3' or 'Potash'.
SpModel.Used Standard The Standard species model is being used.
Species Model An alternative species model is being used.
SpModelType Display This field displays the Species Model type (or Name) used.

Content Properties

Temperature / T Calc The temperature of the incoming material.
Pressure / P Calc The pressure of the incoming material.
Density See the section on Density for further information.
Density / Rho Calc Calculated Density of the material
SolidDensity / SRho Calc Density of the solids phase
LiquidDensity / LRho Calc Density of the liquid phase
VapourDensity / VRho Calc Density of the vapour phase
SlurryDensity / SLRho Calc Density of the Slurry (Liquid and Solid phase)
SolidConc Calc The solids concentration at stream temperature.
Density Correction
H2O(l).State Data This will be OK if all of the species with density correction functions in the {{{UnitOp}}} conditions are within their mass fraction limits. Any species that has exceeded its mass fraction limit will be shown in this field.
For example, if the user has a density correction function for NiSO4(aq) that is valid up to a mass fraction of 10% NiSO4 and the stream contains 15% NiSO4(aq), this field will contain: Limit:NiSO4(aq).
H2O(l).Rho Calc The density of pure water at the temperature and pressure of the {{{UnitOp}}}.
H2O(l).CorrFactor Calc The calculated density correction factor using all the correction factors of aqueous species in the {{{UnitOp}}} for which density correction factors have been defined. Please see Density Correction Function.
H2O(l).AppRho Calc The calculated density of the liquor with only water and the components that have density correction functions.

Note: This value may be lower or higher than the actual liquid density if there are other liquid components in the {{{UnitOp}}} that do not have density correction functions.

If the Additional Density Correction option is selected in the Plant Model - Species tab page or from the Include Properties dropdown list on the first page of the material Flow section, then the following fields will also be shown:
H2O(l).AppRho25 Calc The calculated density of the liquor with only water and the components that have density correction functions, at 25°C.
H2O(l).AppQm Calc The calculated mass flow of the liquor with only water and the components that have density correction functions.
H2O(l).AppQv Calc The calculated volume flow of the liquor with only water and the components that have density correction functions.
H2O(l).Fct.X(y) Calc The calculated density correction factor for species X(y).
Mass Fractions
SolidFrac / Sf Calc Solids mass fraction
LiquidFrac / Lf Calc Liquid mass fraction
VapourFrac / Vf Calc Vapour mass fraction
SlurryFrac / SLf Calc Available from Build 139.31388. Slurry (solids + liquids) mass fraction.
Slurry.SolidFrac / Slurry.Sf Calc Solids mass fraction on slurry basis (solids + liquids)
Slurry.LiquidFrac / Slurry.Lf Calc Liquid mass fraction on slurry basis (solids + liquids)
Volume Fractions
SolidVolFrac / Svf Calc Solids volume fraction
LiquidVolFrac / Lvf Calc Liquid volume fraction
VapourVolFrac / Vvf Calc Vapour volume fraction
SlurryVolFrac / SLvf Calc Available from Build 139.31388. Slurry (solids + liquids) volume fraction.
Slurry.SolidVolFrac / Slurry.Svf Calc Available from Build 139.31388. Solids volume fraction on slurry basis (solids + liquids)
Slurry.LiquidVolFrac / Slurry.Lvf Calc Available from Build 139.31388. Liquid volume fraction on slurry basis (solids + liquids)
Molar Fractions
MlSolidFrac / MlSf Calc Solids molar fraction
MlLiquidFrac / MlLf Calc Liquid molar fraction
MlVapourFrac / MlVf Calc Vapour molar fraction
MlSlurryFrac / MlSLf Calc Available from Build 139.31388. Slurry (solids + liquids) molar fraction.
MoleWt Calc The average molecular weight of all the species.
SolidMoleWt / SMoleWt Calc Available from Build 139. The average molecular weight of all solid species.
LiquidMoleWt / LMoleWt Calc Available from Build 139. The average molecular weight of all liquid species.
VapourMoleWt / VMoleWt Calc Available from Build 139. The average molecular weight of all vapour species.

Content Energy

These properties will only be shown if the user has chosen to display the Energy (Thermodynamic) Properties on the Plant Model - Views tab page or from the Include Properties dropdown list on the first page of the material Flow section.

Specific Heat
Cp@0 Calc Cp of the total mixture in the {{{UnitOp}}} @ 0 °C.
Cp / Cp@T Calc Cp of the total mixture in the {{{UnitOp}}} @ temperature.
SmsCp@T Calc Solids Cp at the {{{UnitOp}}} temperature
LmsCp@T Calc Liquid Cp at the {{{UnitOp}}} temperature
VmsCp@T Calc Vapour Cp at the {{{UnitOp}}} temperature
SLmsCp@T Calc Slurry Cp at the {{{UnitOp}}} temperature
CpCv Calc The ratio of specific heat at constant pressure to specific heat at constant volume at the {{{UnitOp}}} temperature.
Enthalpy - Sensible
Hs@T Calc The change in enthalpy, dH, (excluding phase change) from 0°C to {{{UnitOp}}} temperature for the total mixture.
SmsHs@T Calc The change in enthalpy, dH, (excluding phase change) from 0°C to {{{UnitOp}}} temperature for the solids.
LmsHs@T Calc The change in enthalpy, dH, (excluding phase change) from 0°C to {{{UnitOp}}} temperature for the Liquids.
VmsHs@T Calc The change in enthalpy, dH, (excluding phase change) from 0°C to {{{UnitOp}}} temperature for the vapours, or gases.
SLmsHs@T Calc The change in enthalpy, dH, (excluding phase change) from 0°C to {{{UnitOp}}} temperature for the combined solids and liquids.
Enthalpy - including Phase Change (Please see What is the difference between Hs and Hz?
Hz@T Calc The change in enthalpy, dH,(including phase change) from 0°C to {{{UnitOp}}} temperature for the total mixture.
Total Enthalpy (previously heading was Enthalpy of Formation) Total Enthalpy = Heat of Formation at 25 + [math]\displaystyle{ \int\limits_{25}^{T}Cp dT\, }[/math]
Hf@0 Calc Total Enthalpy for the mixture at 0°C and 101.325 kPa, per mass.
Hf@T Calc Total Enthalpy for the mixture at the {{{UnitOp}}} temperature and pressure, per mass.
Entropy and Free Energy
S@0 Calc Entropy for the total mixture at 0°C and 101.325 kPa.
S@T Calc Entropy for the total mixture at the {{{UnitOp}}} temperature and pressure.
G@0 Calc Gibbs Free Energy (mass basis) for the total mixture at 0°C and 101.325 kPa.
G@T Calc Gibbs Free Energy (mass basis) for the total mixture at the {{{UnitOp}}} temperature and pressure.
mlG@T Calc Gibbs Free Energy (mole basis) for the total mixture at the {{{UnitOp}}} temperature and pressure.

Values at User defined Temperature and Pressure

Please see included properties - Values at User Defined T and P.

Solubility Values

Please see included properties - Solubility.

Saturation Values

These properties are related to the saturation temperature and pressure of solution. These fields are only visible if the Additional Properties option for Saturation values is selected in the Plant Model - Views tab page or from the Include Properties dropdown list on the first page of the material Flow section.

Saturation...
Component List Any component that has the correct Vp Equations defined in the species database maybe selected here. See VLE sub section for more information.
VapourFrac / Vf Calc Displays the vapour mass fraction.
TotalP Calc Displays the total pressure.
PartialP Calc Displays the partial pressure based on the component selected.
SatP@T Calc Saturated pressure at the mixture temperature.
SatT@PP Calc Saturated temperature at the mixture's partial pressure. Will be NAN (displayed as *) when no partial pressure.
SatT@P Calc Saturated temperature at the mixture pressure.
WaterSatT@P Calc Displays the Saturation Temperature at pressure based on pure water. This is used to calculate the Boiling point elevation. (Please see Water and Steam Properties for further information on this calculation)
BPE Calc
  1. Standard Species Model
  2. Other Species Models, e.g. Bayer
    • Streams containing other species models, such as the Alumina 3 Bayer Species Model, will always use the implemented BPE equation to calculate this value.
    • The boiling point elevation is calculated as StreamSatT@P - ComponentSatT@P.
    • The Solvent used for this calculation is water.

Note: User can change the BPE value limits in the Plant Model - species tab.

Temperature / T Calc Temperature of the {{{UnitOp}}}.
SuperHeat@PP Calc Super Heat at the mixture's partial pressure (T-SatT@PP). Will be NAN (displayed as *) when no partial pressure.
SuperHeat@P Calc Super Heat at the mixture's pressure (T-SatT@P).
Subcooling@P Calc The amount of Subcooling at the mixture's pressure (SatT@P-T).
LatHtVap Calc The Latent heat of vaporisation of the listed component at the temperature and partial pressure of the vaporising species at the local conditions. The latent heat is the difference in enthalpy between the vapour phase and the liquid phase of the species. This is calculated as Enthalpy(VapourPhase at local Temperature and Partial Pressure) - Enthalpy(Liquid Phase at T and Total Pressure). This is the enthalpy difference used in energy calculations. NB unless the partial pressure of the vaporising species is equal to the saturation pressure, the latent heat may not have exactly the same value as for saturation conditions since the vapour phase enthalpy depends on its partial pressure.
LatHtVap@SatP Calc The Latent heat of vaporisation of the listed component at the temperature and saturation pressure of the vaporising species corresponding to the local temperature. The latent heat is the difference in enthalpy between the vapour phase and the liquid phase of the species. This is calculated as Enthalpy(VapourPhase at Temperature, T and saturation pressure for that T, PSat(T)) - Enthalpy(Liquid Phase at T and Total Pressure). This is the latent heat that would be found in saturation tables for a given temperature.
RelHumidity Calc The relative humidity of the {{{UnitOp}}}. This is only useful if the {{{UnitOp}}} contains gases, such as O2, N2, Air, etc.

Relative Humidity = Partial Pressure of the Saturation Component (usually H2O) / Saturation Pressure of the Saturation Component at Stream Temperature * 100
Please see the YouTube link for a video presentation on setting up a feeder with the required Relative Humidity.

Acidity (pH)

These values are calculated based on the Ka and Kb values for acids and bases that are defined in the species database. It does not take buffering into account, and hence is, at best, an estimate of the pH.

SysCAD does have default Ka and Kb values defined for some acids and bases, and the user may enter values for other compounds. For a description of the method that SysCAD uses to calculate the acidity values see Acidity Calculations.

These values will only be shown if the user has chosen to display the pH_Estimate variables on the Plant Model - Views tab page or from the Include Properties dropdown list on the first page of the material Flow section.

Acidity(@25C)
pH.State Calc Either OK - only acids or bases present, OR Acid and Base present, therefore the calculations will be inaccurate.
pH.negLogH Calc This is the negative of the log of the Hydrogen ion molar concentration at 25°C.
pH.AcidsPresent List This lists all of the acids present in the {{{UnitOp}}} that are used to calculate [H+] (molar concentration).
pH.BasesPresent List This lists all of the bases present in the {{{UnitOp}}} that are used to calculate [OH-] (molar concentration).
pH.H_Cation Calc Only displayed if the species list includes H+(aq). This is the negative of the log of the Hydrogen ion molar concentration at 25 °C, due only to the presence of the H+(aq) ion (all other acids and bases are ignored).

Charge

Please see included properties - Charge

Transport Properties

Please see included properties - Transport

Heats of Combustion Properties

Only available in Build 139 or later, please see included properties - Heats of Combustion.

Solution Impurities

Please see included properties - Solution Impurities.

H2O Properties

Please see included properties - H2O Properties

WQ Tab Page

Please see included properties - Water Quality.