Template:Tank Outlets Tab

From SysCAD Documentation
Jump to navigation Jump to search

Notes:

  1. All gases exit via the Gas Vent and cannot exit via normal Outlet links.
  2. If no Gas Vent is connected, then any Gas will exit via an automatically created Gas Spill direct link.
Tag (Long/Short) Input/ Calc Description
(The following group of tags are shown for each Product outlet stream connected to the Tank)
XXX ...
ConnectedPipe Display The tag of the connected pipe.
Order Display The order used for determining outlet flows.
Filter None All liquid and solid material will be able to exit via the connected pipe.
Block-Solids Solids will be not be allowed to exit via the connected pipe.
Block-Liquids Liquids will be not be allowed to exit via the connected pipe.
Composition Allows the user to specify the solid, liquid and vapour fractions.
Individual Phase Allows the user to specify an individual phase to draw from the tank.
Composition.SolidFrac / Sf Input Only visible if Filter = Composition. The required solid fraction of the stream.
Composition.LiquidFrac / Lf Input Only visible if Filter = Composition. The required liquid fraction of the stream.
Composition.VapourFrac / Vf Input Only visible if Filter = Composition. The required vapour fraction of the stream.
IPhase / IPh Input Only visible if Filter = Individual Phase. The required individual phase of the stream.
HeightFrac Input The connection height of the pipe on the tank, expressed as a percentage or fraction of the tank height. Material will not flow out of the pipe unless the level in the tank reaches the height of the pipe.

Notes

  1. If multiple pipes are connected at the same height, then depending on capacities, the behaviour for calculation of flows for each pipe (and spill) may be undefined. It is recommended to have each outlet pipe at a different level. (For example, when 2 outlet pipes have them at 99.8% and 99.9%.)
  2. The IO connections are sorted in the order of connection height. Therefore, if you make a change to the IO connection height, please double check the IO "Link name" before configuring the IO, as the IO display order may have changed.
XXX ...
Outlet XXX
(These Output connection tags are also available on the Pipe access window. Any changes made here will be updated on the pipe access window and vice-versa.)
CapacityControl Off The maximum mass flow through the outlet will be set to unlimited amount (uncontrolled).
ByMassFlow The user can specify the maximum mass flow through the outlet.
ByVolumeFlow The user can specify the maximum volumetric flow through the outlet.
Qm.ReqdCapacity / Capacity Input Visible with the ByMassFlow method. The required pipe Capacity in mass flow.
Qm.MinCapacity / MinCap Input Visible with the ByMassFlow method. The minimum user specified flow capacity by mass.
Qm.MaxCapacity / MaxCap Input Visible with the ByMassFlow method. The maximum user specified flow capacity by mass. Enter * for unlimited flow.
Qv.ReqdCapacity / Capacity Input Visible with the ByVolumeFlow method. The required pipe Capacity in volumetric flow.
Qv.MinCapacity / MinCap Input Visible with the ByVolumeFlow method. The minimum user specified flow capacity by volume.
Qv.MaxCapacity / MaxCap Input Visible with the ByVolumeFlow method. The maximum user specified flow capacity by volume. Enter * for unlimited flow.
MeasRho Display The stream density used when converting between mass and volume flows.
OverCapacity Spill If more material enters the pipe then the Maximum Capacity value, then the excess material will be 'spilled' and sent to the Spills area.
Accept If more material enters the pipe then the Maximum Capacity value, then the pipe must accept the excess material.
BatchMethod None The Batch functionality is not enabled.
Total Mass The Batch functionality is enabled and the required batch size is defined in terms of Mass flow. Further fields will become visible if this option is selected allowing the user to set the required batch mass.
Total Volume The Batch functionality is enabled and the required batch size is defined in terms of Volume flow. Further fields will become visible if this option is selected allowing the user to set the required batch volume.
The following fields will be visible if Total Mass is selected as the Batch method.
M.BatchAddition Input The Mass of the required Batch. This amount of material will be allowed to flow out of the pipe at the rate specified in Qm.Capacity or Qv.Capacity.
When this value is set the amount of material will be added to the amount of material already in M.BatchRemaining (the field below), and then this field will revert to 0.
M.BatchRemaining Calc / Input The Mass of material currently in a Batch, i.e. the amount of material in a Batch that still has to flow through the pipe. Normally this value is initialised at the start of a run and then it is calculated by SysCAD from the amount required in M.BatchAddition and the amount already delivered by the batch.
However, the user may set this value and hence override the calculated Batch amount at any stage.
If the users sets this as Undefined (or '*') this is equivalent to any infinite Batch and therefore the flow through the pipe will not be restricted.
M.BatchTotal Display The Total Mass that has flowed through the pipe using the Batch addition method.
The following fields will be visible if Total Volume is selected as the Batch method.
V.BatchAddition Input The Volume of the required Batch. This amount of material will be allowed to flow out of the pipe at the rate specified in Qm.Capacity or Qv.Capacity.
When this value is set the amount of material will be added to the amount of material already in V.BatchRemaining (the field below), and then this field will revert to 0.
V.BatchRemaining Calc / Input The Volume of material currently in a Batch, i.e. the amount of material in a Batch that still has to flow through the pipe. Normally this value is initialised at the start of a run and then it is calculated by SysCAD from the amount required in V.BatchAddition and the amount already delivered by the batch.
However, the user may set this value and hence override the calculated Batch amount at any stage.
If the users sets this as Undefined (or '*') this is equivalent to any infinite Batch and therefore the flow through the pipe will not be restricted.
V.BatchTotal Display The Total Volume that has flowed through the pipe using the Batch addition method.
The following fields will be visible if Total Mass or Total Volume is selected as the Batch method.
BatchState None No Batch mode has been set.
Inactive A Batch method has been selected, but the Batch is undefined.
Busy A Batch method has been selected, there is material remaining in the Batch, and hence there is flow in the pipe due to the Batch.
Stop Flow A Batch method has been selected, there is NO material remaining in the Batch, and hence there is no flow in the pipe, i.e. the Batch will prevent any flow in the pipe.
BatchClearOnEmpty Tickbox If enabled, any remaining batch amount will be cleared on Empty action command.
BatchUsePreset Tickbox This enables the use of Preset for the Batch amount.
M or V.BatchUsePreset Input The Mass or Volume of the Batch when the model is Preset. Refer to Actions Commands - Preset for more information.