Template:TCEEvaporator Tab Page

From SysCAD Documentation
Jump to navigation Jump to search

Unit Type: {{{TCE}}}Evaporator - The first tab page in the access window will have this name.

Tag (Long/Short) Input / Calc Description/Calculated Variables / Options
Tag Display This name tag may be modified with the change tag option.
Condition Display OK if no errors/warnings, otherwise lists errors/warnings.
ConditionCount Display The current number of errors/warnings. If condition is OK, returns 0.
GeneralDescription / GenDesc Display This is an automatically generated description for the unit. If the user has entered text in the 'EqpDesc' field on the Info tab (see below), this will be displayed here.
If this field is blank, then SysCAD will display the UnitType or SubClass.
Requirements
On Tickbox This variable in used to turn the unit ON or OFF. If this not ticked, the material will flow out of the Product outlet with no change in state, i.e. the unit acts as a pipe.
Mode Stand Alone (Manual) The Evaporator will act as a 'Stand Alone' unit and the user may set the required operating Pressure or Temperature.
Flash Train The Evaporator will act as part of a Flash Train. In this mode the Evaporator vent must be connected to a steam consumer, such as a Barometric Condenser, Shell and Tube Heat Exchanger, Shell and Tube Heat Exchanger 2 or a Direct Contact Heater. The steam requirements of the steam consumer will drive the operating pressure of the Evaporator, therefore the user may NOT set the operating temperature or pressure.
OperatingP The user may only set the operating pressure or temperature of the {{{TCE}}} Evaporator if it is NOT part of a Flash Train.
Method Atmospheric This method is only available if 'Stand Alone' Mode is chosen. All flash calculations will be done at Atmospheric Pressure. The atmospheric pressure is calculated by SysCAD based on the user defined elevation (default elevation is at sea level = 101.325 kPa). The elevation can be changed on the Environment tab page of the Plant Model.
RequiredP This method is only available if 'Stand Alone' Mode is chosen. All flash calculations will be done at the user specified pressure (and saturated temperature @ P).
RequiredT This method is only available if 'Stand Alone' Mode is chosen. All flash calculations will be done at the user specified temperature (and saturated pressure @ T).
Saturated The OperatingP - Method will be set to Saturated if 'Flash Train' Mode is chosen. All flash calculations will be done at the saturated pressure.
PressureReqd / P_Reqd Input This field is only visible if the RequiredP method is chosen. This is user specified flash pressure.
TemperatureReqd / T_Reqd Input This field is only visible if the RequiredT method is chosen. This is user specified flash temperature.
Result Calc The actual pressure used for the sum of the feeds which will also be the outlet pressure (unless further model options change the pressure).
MinFlashP Input This is only visible when 'Flash Train' Mode is chosen. The Minimum Flash Pressure.
UseFeedP Tickbox This is only visible if the mode = Stand Alone. If this field is enabled then all of the Evaluation Block calculations will be performed at the Feed pressure. Otherwise, if it is not enabled, the calculations will be performed at the final pressure. See also Model Theory.
Vapour Entrainment
FlashVapToLiquid Input This field allows the user to set a proportion of the flash vapour bypassing to the liquid stream. The default is 0%.
OtherGasToLiquid Input This field allows the user to set a proportion of any non-condensable gas bypassing to the liquid stream. The default is 0%.
Evaporator Heat Exchanger Options
HXType None The unit is not connected to a Heat Exchanger. No other fields are visible for the Heat Exchanger if this option is chosen.
External The Evaporator is connected to an External Heat Exchanger unit. This external unit may be any type of SysCAD model.
Embedded Heater The Evaporator contains an Embedded Heater. If this option is chosen, an additional page HX becomes visible and the user configures the Heat Exchanger within the Evaporator.
Embedded Cooler The Evaporator contains an Embedded Cooler. If this option is chosen, an additional page HX becomes visible and the user configures the Heat Exchanger within the Evaporator.
HX.HeaterCount / NumOfHeaters Input The number of heaters.
HXOut.SplitMethod Off No flow is sent to the Heat Exchanger.
Ratio to Feed MassFlow The flow to the Heat Exchanger (either Embedded or External) is a Ratio of the Feed mass. The composition and temperature of the stream to the Heat Exchanger is the same as the Combined Feed to the Evaluation Block.
Ratio to Prod MassFlow The flow to the Heat Exchanger (either Embedded or External) is a Ratio of the Product mass. The composition and temperature of the stream to the Heat Exchanger is the same as the Product from the Evaluation Block. Note: The Product mass includes both the Overflow and the Product streams.
MassFlow The flow to the Heat Exchanger (either Embedded or External) is a fixed mass flow. The composition and temperature of the stream to the Heat Exchanger is the same as the Product from the Evaluation Block. Note: The Product mass includes both the Overflow and the Product streams.
VolumeFlow The flow to the Heat Exchanger (either Embedded or External) is a fixed volumetric flow. The composition and temperature of the stream to the Heat Exchanger is the same as the Product from the Evaluation Block. Note: The Product mass includes both the Overflow and the Product streams.
MassFlow Per Heater The flow to each Heat Exchanger (either Embedded or External) is mass based. The composition and temperature of the stream to the Heat Exchanger is the same as the Product from the Evaluation Block. Note: The Product mass includes both the Overflow and the Product streams.
VolumeFlow Per Heater The flow to each Heat Exchanger (either Embedded or External) is volume based. The composition and temperature of the stream to the Heat Exchanger is the same as the Product from the Evaluation Block. Note: The Product mass includes both the Overflow and the Product streams.
HXOut.RatioToFeedQm Input Only visible if SplitMethod = Ratio to Feed MassFlow. The flow to the Heat Exchanger (either Embedded or External) is Feed Flow times by this Ratio.
HXOut.RatioToProdQm Input Only visible if SplitMethod = Ratio to Prod MassFlow. The flow to the Heat Exchanger (either Embedded or External) is Product Flow times by this Ratio. Note: The Product mass includes both the Overflow and the Product streams.
HXOut.MassFlowReqd / QmReqd Input Only visible if SplitMethod = MassFlow. The required Product mass flow to the Heat Exchanger (either Embedded or External).
HXOut.VolumeFlowReqd / QvReqd Input Only visible if SplitMethod = VolumeFlow. The required Product volumetric flow to the Heat Exchanger (either Embedded or External).
HXOut.EachHeaterQmReqd Input Only visible if SplitMethod = MassFlow per Heater. The required Product mass flow to each Heater (either Embedded or External).
HXOut.EachHeaterQvReqd Input Only visible if SplitMethod = VolumeFlow per Heater. The required Product volumetric flow to each Heater (either Embedded or External).
HXOut.SolidFracMethod No Solids No solids are sent to the Heat Exchanger.
Mixture Solids The feed to the Heat Exchanger (either Embedded or External) will contain the same amount of solids (if any) as the relevant stream (Combined Feed to or Product from the Evaluation Block).
Solids Fraction The user can specify the fraction of solids in the feed to the Heat Exchanger.
HXOut.SolidFracReqd Input The required solids fraction in the feed to the Heat Exchanger.
Options
VapStandardSpModel Tickbox This forces the vent stream to revert to the Standard species model. If this is NOT ticked, then the species model in the vent will be the same as the species model used in the Evaporator.
Normally this is left ticked, as the vent contains steam and the Standard species model will calculate all of the properties of steam correctly.
ShowQFeed Tick Box QFeed and associated tab pages (e.g. Qm) will become visible if this is enabled. These tabs will show the properties of the combined feed stream to the Unit. These values are BEFORE the Evaluation Block is processed.
ShowQBodyFeed Tick Box QBodyFeed and associated tab pages (e.g. Qm) will become visible if this is enabled. These tabs will show the properties of the feed to the Evaporator Body.
ShowQRecycle Tickbox This is only visible if an Embedded Heat Exchanger is used. If this option is ticked then the recycle stream to the Heat Exchanger is displayed as 'QRecycle' and the user may access properties of the stream feeding the Heat Exchanger.
ShowQProd Tick Box QProd and associated tab pages (e.g. Qm) will become visible if this is enabled. These tabs will show the properties of the product stream from the Unit, AFTER the Evaluation Block is processed, but BEFORE the stream is split to overflow and product.